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Smoking is a large problem in the entire world. Despite overwhelming facts 
about smoking, it is still a very bad habit which is widely spread and 
accepted socially. Among smokers, often the desire to quit smoking arises. A 
large number of smokers attempt to quit, but only a few of them are 
successful. In this research, the nonstandard finite difference scheme is 
applied on system which is dynamically consistent, easy to implement and 
show a good agreement to control the bad impact of smoking for long period 
of time and to eradicate a death killer factor in the world spread by smoking. 
We have discussed the qualitative behavior of the model and numerical 
simulations are carried out to support the analytical results. 
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1. Introduction

*The scope of mathematics includes mathematical
modeling and esoteric mathematics. The flow of 
work, process, predictions and outcomes can easily 
be measured with the help of mathematical concepts 
and theory. Therefore, biologists are now extremely 
dependent on mathematics. Mathematical modeling 
of biological sciences is done by many brilliant 
scientists (Biazar, 2006; Busenberg and Van den 
Driessche, 1990; El-Sayed et al., 2009). The 
relationship between simple mathematical modeling 
involves biological system, integer order differential 
equations that show their dynamics and complex 
system which describes their changing of structure. 
The nonlinearity and multi-scale behaviors in 
mathematical modeling describe the mutual 
relationship between parameters (Makinde, 2007). 
In last few decades, many biological models were 
studied in detail by using classical derivatives (Arafa 
et al., 2012; Kribs-Zaleta, 1999; Buonomo and 
Lacitignola, 2008; Liu and Wang, 2010; Haq et al, 
2017). 

Smoking is the major problem in the entire world 
effecting healthy community. Smoking effects 
different organs of human body caused more than 
one million deaths in the world. A chance of heart 
attack in smoker is 70% more as compared to 
nonsmoker. Similarly the incident rate of lung cancer 
of smoker is 10% more than nonsmoker. The main 
effects of short term smoking are coughing, stained 
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teeth, high blood pressure and bad breath. The major 
effects of long term smoking are gum disease, 
stomach ulcer, lung cancer, heart disease, throat 
cancer and mouth cancer in the recent years. The life 
of smoker is also 12 to 13 years shorter than non-
smoker. According to the reports of WHO smoking 
kills many individual in the entire world. Every 
scientist, doctor and mathematician tries to control 
the effect of smoking and mathematician tried for 
the formation of different valuable smoking models 
to overcome the smoking effects. The lot of smoking 
models was planned by the authors. Examined the 
smoking model related with Caputo fractional 
derivative (Erturk et al., 2012). Examined the 
optimal control of the smoking models and present 
the qualitative analysis of dynamics of smoking 
(Zaman, 2011a; 2011b). Analysis of cigarette 
smoking and lung cancer (Lubin and Caporaso, 
2006). Describe the mathematical analysis of the 
dynamics of tobacco us their recovery and decline 
(Garsow et al., 2000). Explained the smoking 
fractional mathematical model (Mickens, 1989). 
Established the curtailing smoking dynamics 
(Sharomi and Gumel, 2008). Examined a fractional 
smoking and many others (Zeb et al., 2012). 
Interpret the description of smoking global dynamics 
of mathematical system of equations (Alkhudhari et 
al., 2014). 

In order to overcome the numerical instabilities 
phenomena in 1989 Mickens introduced the concept 
nonstandard finite difference scheme and after that 
has developed NSFD methods in many works, such 
as (Mickens, 1994; 2000; 2002; 2005). According to 
Mickens, NSFD schemes are those constructed 
following a set of five basic rules. The NSFD schemes 
preserve main properties of the differential 
counterparts, such as positivity, monotonicity, 
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periodicity, stability, and some other invariant 
including energy and geometrical shapes. It should 
be emphasized that NSFD schemes can preserve all 
properties of continuous models for any 
discretization parameters. The discrete models with 
these properties are called dynamically consistent 
(Anguelov et al., 2014). 

In this paper, the total population is divided into 
five compartments potential smokers, occasional 
smokers, heavy smokers, temporary quitters and 
permanently quitters. We also investigate the 
stability and qualitative analysis of smoking model. 
An unconditionally convergent nonstandard finite 
difference scheme has been presented to obtain 
solution of model. The analysis of disease free 
equilibrium has been made by finding reproductive 
number. Numerical results are presented graphically 
to show the dynamics of the model. 

2. Mathematical model 

Smoking model is divided into five sub 
compartment like potential smokers 𝑃(𝑡), occasional 
smokers 𝐿(𝑡), heavy smokers 𝑆(𝑡) temporary 
quitters 𝑄(𝑡) and smokers who quit permanently 
𝑅(𝑡) specified by 𝑇(𝑡) = 𝑃(𝑡) + 𝐿(𝑡) + 𝑆(𝑡) + 𝑄(𝑡) +
𝑅(𝑡). The proposed smoking model (Singh et al., 
2017) in the form of system of nonlinear differential 
equation is given as: 
 
𝑑𝑃

𝑑𝑡
= 𝑎(1 − 𝑃) − 𝑏𝑃𝑆                     (1) 

𝑑𝐿

𝑑𝑡
= −𝑎𝐿 + 𝑏𝑃𝑆 − 𝑐𝐿𝑆                     (2) 

𝑑𝑆

𝑑𝑡
= −(𝑎 + 𝑑)𝑆 + 𝑐𝐿𝑆 + 𝑓𝑄                    (3) 

𝑑𝑄

𝑑𝑡
= −(𝑎 + 𝑓)𝑄 + 𝑑(1 − 𝑒)𝑆                    (4) 

𝑑𝑅

𝑑𝑡
= −𝑎𝑅 + 𝑒𝑑𝑆                      (5) 

 

Here 𝑏 indicates the contact rate between 
potential smokers and smokers who smoke 
occasionally, 𝑐 represents the contact rate between 
temporary quitters and smokers who smoke 
occasionally, 𝑑 represents the rate of giving up 
smoking, (1 − 𝑒) stances for the fraction of smokers 
who temporarily give up smoking at a rate 𝑑, 𝑓 
indicate the contact rate between smokers and 
temporary quitters who return back to smoking,  𝑎 
denotes the rate of natural death, 𝑒 denotes the 
remaining fraction of smokers who give up smoking 
permanently (at a rate 𝑑). 

3. Qualitative analysis 

3.1. Disease free equilibrium  

By substituting the values of parameters in given 
system of differential equations and the rate of 
change with respect to time is zero, we get. 
 
𝑎(1 − 𝑃) − 𝑏𝑃𝑆 = 0  
−𝑎𝐿 + 𝑏𝑃𝑆 − 𝑐𝐿𝑆 = 0  
−(𝑎 + 𝑑)𝑆 + 𝑐𝐿𝑆 + 𝑓𝑄 = 0  
−(𝑎 + 𝑓)𝑄 + 𝑑(1 − 𝑒)𝑆 = 0  
−𝑎𝑅 + 𝑒𝑑𝑆 = 0  

By simplifying the above equations we get, 
disease-free equilibrium, denoted by 𝐸0 i.e., 𝐸0 =
(1,0,0,0,0). 

3.2. Endemic equilibrium 

Endemic equilibrium are found in terms of one of 
the infected compartment, denoted by 𝐸1 i.e., 

 
𝐸1 = (𝑃∗, 𝐿∗, 𝑆∗, 𝑄∗, 𝑅∗)  

 
where 
 

𝑃∗ =
𝑎

𝑎+𝑏𝑆∗
 , 𝐿∗ =

𝑎𝑏

(𝑎+𝑏𝑆∗)(𝑎+𝑐𝑆∗)
 , 𝑄∗ =

𝑑(1−𝑒)𝑆∗

𝑎+𝑓
 , 𝑅∗ =

𝑒𝑑𝑆∗

𝑎
 

4. Stability and sensitivity analysis 

It is important to find the verge conditions to 
check the status of population, whether the disease 
persist or dies out. In case of disease free 
equilibrium point, 𝑅0 < 1, which shows that the 
disease will dies out. In case of endemic equilibrium, 
𝑅0 > 1, which shows that the disease spreads in the 
population, where 𝑅0 is the reproductive number is 
also known basic reproductive ratio or basic 
reproductive rate. Consider the jacobian matrix as 
 

𝐽 =

[
 
 
 
 
−𝑎 − 𝑏𝑆

𝑏𝑆
0
0
0

0
−𝑎 − 𝑐𝑆

𝑐𝑆
0
0

−𝑏𝑃
𝑏𝑃 − 𝑐𝐿

−𝑎 − 𝑑 + 𝑐𝐿
𝑑(1 − 𝑒)

𝑒𝑑

0
0
𝑓

−𝑎 − 𝑓
0

0
0
0
0

−𝑎]
 
 
 
 

  

  

since the Jacobin matrix is 𝐽 = 𝐹 − 𝑉 where 
 

𝐹 =

[
 
 
 
 
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
𝑓
0
0

0
0
0
0
0]
 
 
 
 

  

 
and  
 

𝑉 =

[
 
 
 
 
𝑎 + 𝑏𝑆
−𝑏𝑆
0
0
0

0
𝑎 + 𝑐𝑆
−𝑐𝑆
0
0

𝑏𝑃
−𝑏𝑃 + 𝑐𝐿
𝑎 + 𝑑 − 𝑐𝐿
−𝑑(1 − 𝑒)

−𝑒𝑑

0
0
𝑓

𝑎 + 𝑓
0

0
0
0
0
𝑎]
 
 
 
 

  

 

We know that 𝐾 = 𝐹𝑉−1 and using the relation 
|𝐾 − 𝜆𝐼| = 0 solving on mathematica for the Eigen 
value 𝜆, which represents the reproductive number 
𝑅0 i.e., 

 

𝑅0 =
𝑑𝑓(1−𝑒)

(𝑎+𝑑)(𝑎+𝑓)
  

 

hence 𝑅0 = 0.431034 < 1, according the parameters 
values given by Singh et al. (2017). 
 

Theorem 1: The disease free equilibrium 𝐸0is locally 
asymptotically stable for 𝑅0 < 1, otherwise unstable. 
 
Proof: 𝐸0 of the given system is locally 
asymptotically stable if  𝑅𝑒(𝜆) < 0 where 𝜆 can be 
evaluated from the relation |𝐽0 − 𝜆I| = 0. 
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 Consider the jacobian matrix again and 
substituting the values of disease free point 𝐸0, we 
get 

 

𝐽0 =

[
 
 
 
 
−𝑎
0
0
0
0

0
−𝑎
0
0
0

−𝑏
𝑏

−𝑎 − 𝑑
𝑑(1 − 𝑒)

𝑒𝑑

0
0
𝑓

−𝑎 − 𝑓
0

0
0
0
0

−𝑎]
 
 
 
 

  

 
By using the relation |𝐽0 − 𝜆I| = 0 , we get. 𝑅𝑒(𝜆) 

as: 
 

𝜆1 = −𝑎, 

𝜆2 =
1

2
[−2𝑎 − 𝑑 − 𝑓 − √𝑑2 + 2𝑑𝑓 − 4𝑑𝑒𝑓 + 𝑓2] < 0,  

𝜆3 =
1

2
[−2𝑎 − 𝑑 − 𝑓 + √𝑑2 + 2𝑑𝑓 − 4𝑑𝑒𝑓 + 𝑓2] < 0.  

 

All the Eigen values of the above matrix according 
to the disease free equilibrium point are negative 
real parts which represents that the given system is 
locally asymptotically stable. 

Sensitivity of 𝑅0 can be analyzed by taking the 
partial derivatives of reproductive number for the 
involved parameters as follows 
 
𝜕𝑅

𝜕𝑎
=

−𝑑𝑓(1−𝑒)(2𝑎+𝑑+𝑓)

((𝑎+𝑑)(𝑎+𝑓))
2 < 0  

𝜕𝑅

𝜕𝑑
=

𝑎𝑓(1−𝑒)

(𝑎+𝑓)(𝑎+𝑑)2
> 0  

𝜕𝑅

𝜕𝑒
=

−𝑑𝑓

(𝑎+𝑑)(𝑎+𝑓)
< 0  

𝜕𝑅

𝜕𝑓
=

𝑎𝑑(1−𝑒)

(𝑎+𝑑)(𝑎+𝑓)2
> 0.  

 

It can be seen that 𝑅0 is most sensitive to change 
in parameter, here, 𝑅0 is increasing with 𝑑, 𝑓 and 
decreasing with 𝑎, 𝑒 . In other words it found that 
the sensitivity analysis shows that prevention is 
better than to control the disease.  

5. Non standard fine difference scheme 

In this section, we design an NSFD scheme 
(Anguelov and Lubuma, 2001) that replicates the 
dynamics of the continuous model (1)-(5). Let 𝑌𝑘 =
(𝑃𝑘 , 𝐿𝑘 , 𝑆𝑘 , 𝑄𝑘 , 𝑅𝑘)

𝑇 denoted an approximation of 
𝑋(𝑡𝑘) where 𝑡𝑘 = 𝑘∆𝑡 with 𝑘 ∈ 𝑁, ℎ = ∆𝑡 > 0 be a 
step size, then 
 
𝑃𝑘+1−𝑃𝑘

∅
= 𝑎 − 𝑎𝑃𝑘+1 − 𝑏𝑃𝑘+1𝑆𝑘                    (6) 

𝐿𝑘+1−𝐿𝑘

∅
= −𝑎𝐿𝑘+1 + 𝑏𝑃𝑘+1𝑆𝑘 − 𝑐𝐿𝑘+1𝑆𝑘                   (7) 

𝑆𝑘+1−𝑆𝑘

∅
= −(𝑎 + 𝑑)𝑆𝑘+1 + 𝑐𝐿𝑘+1𝑆𝑘 + 𝑓𝑄𝑘                  (8) 

𝑄𝑘+1−𝑄𝑘

∅
= −(𝑎 + 𝑓)𝑄𝑘+1 + 𝑑(1 − 𝑒)𝑆𝑘+1                  (9) 

𝑅𝑘+1−𝑅𝑘

∅
= −𝑎𝑅𝑘+1 + 𝑒𝑑𝑆𝑘+1                 (10) 

 

which is the proposed NSFD Scheme for the given 
model, where 
 

∅ = ∅(ℎ) =
1−𝑒−𝑑(1−𝑒)ℎ

𝑑(1−𝑒)
                  (11) 

 

The discrete method (6-10) is indeed an NSFD 
scheme because it is constructed according to 

Mickens’ rules (Mickens, 1994) formalized as follows 
in (Anguelov and Lubuma, 2001). 

 
Rule 1: The standard denominator ℎ = ∆𝑡 of the 
discrete derivatives is replaced by the complex 
denominator function in Eq. 11 which satisfies the 
asymptotic relation ∅(ℎ) = ℎ + 𝑂(ℎ2). 

 
Note that the denominator function ∅ is expected 

to better capture the dynamics of the continuous 
model through the presence of the underlying 
parameters 𝑑, 𝑒. In fact, exact schemes for a wide 
range of dynamical systems involve such complex 
denominator functions (Lubuma and Patidar, 2007; 
Gumel, 2014). 

 
Rule 2: Nonlinear terms in the right-hand side of 
Eqs. 1-5 are approximated in a non-local way. For 
instance, 𝑃(𝑡𝑘)𝑆(𝑡𝑘) ≅ 𝑃𝑘+1𝑆𝑘  we have instead of 
𝑃(𝑡𝑘)𝑆(𝑡𝑘) ≅ 𝑃𝑘𝑆𝑘  

6. Analysis of scheme 

Theorem 6.1: The NSFD scheme (6)-(10) is a 
dynamical system on the biological feasible domain 
𝜅 of the continuous model (1)-(5). 
 
Proof: First, we prove the positivity of the scheme 
(6-10). It is easy to show that the NSFD scheme (6-
10) takes the explicit form 
 

𝑃𝑘+1 =
∅𝑎+𝑃𝑘

1+∅(𝑎+𝑏𝑆𝑘)
  

𝐿𝑘+1 =
∅𝑏(∅𝑎+𝑃𝑘)𝑆𝑘+(1+∅(𝑎+𝑏𝑆𝑘))𝐿𝑘

(1+∅(𝑎+𝑏𝑆𝑘))(1+∅(𝑎+𝑐𝑆𝑘))
  

𝑆𝑘+1 =
∅𝑐𝐴∗𝑆𝑘+∅𝑓𝐵∗𝑄𝑘+𝐵∗𝑆𝑘

𝐵∗(1+∅(𝑎+𝑑))
  

𝑄𝑘+1 =
∅𝑑(1−𝑒)(∅𝑐𝐴∗𝑆𝑘+∅𝑓𝐵∗𝑄𝑘+𝐵∗𝑆𝑘)+𝐵∗(1+∅(𝑎+𝑑))𝑄𝑘

𝐵∗(1+∅(𝑎+𝑑))(1+∅(𝑎+𝑓))
  

𝑅𝑘+1 =
∅𝑒𝑑(∅𝑐𝐴∗𝑆𝑘+∅𝑓𝐵∗𝑄𝑘+𝐵∗𝑆𝑘)+𝐵∗(1+∅(𝑎+𝑑))𝑅𝑘

𝐵∗(1+∅(𝑎+𝑑))(1+∅𝑎)
  

 
where  
 

𝐴∗ = ∅𝑏(∅𝑎 + 𝑃𝑘)𝑆𝑘 + (1 + ∅(𝑎 + 𝑏𝑆𝑘)) 𝐿𝑘   

 
and 
 

𝐵∗ = (1 + ∅(𝑎 + 𝑏𝑆𝑘)) (1 + ∅(𝑎 + 𝑐𝑆𝑘)).  

 
Thus 𝑃𝑘+1 ≥ 0, 𝐿𝑘+1 ≥ 0, 𝑆𝑘+1 ≥ 0, 𝑄𝑘+1 ≥ 0, 

𝑅𝑘+1 ≥ 0, whenever the discrete variables are non-
negative at the previous iteration. It remains to 
prove the positive invariance of 𝜅. Adding the (6), (7) 
and (8), we have 

 
1 + ∅(𝑎 + 𝑑)𝐻𝑘+1 = ∅𝑎 + 𝐻𝑘 − (1 + ∅𝑎)𝐼𝑘+1 ≤ ∅𝑎 + 𝐻𝑘  
1 + ∅(𝑎 + 𝑑)𝐻𝑘+1 ≤ ∅𝑎 + 𝐻𝑘  

 

therefore 𝐻𝑘+1 ≤
𝑎

𝑎+𝑑
 whenever 𝐻𝑘 ≤

𝑎

𝑎+𝑑
. 

The priori bounds for 𝑄𝑘+1 and 𝑅𝑘+1 follows 
readily from the fact that 𝑄𝑘+1and 𝐿𝑘+1 are less than 
or equal to  𝐻𝑘+1. This completes the proof. 
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7. Results and discussion 

The mathematical analysis of epidemic smoking 
model with non-linear incidence has been presented. 
To observe the effects of the parameters using in this 
dynamics smoking model (1)-(5), conclude several 
numerical simulations varying the value of 
parameters for 𝑅0 < 1. Figs. 1-5 show the 
convergence solution for diseases free equilibrium 
by using NSFD scheme at ℎ = 1, ℎ = 5 and ℎ = 10 for 
∅ = ∅(ℎ) + 𝑂(ℎ2). The technique create a better 
impact to control the smoking, it reduces the 
infected rate and increases the potential smokers 
during disease Free State. In Fig. 1 by decreasing the 
value of ℎ potential smokers(𝑃)increases with time. 
In Fig. 2 by decreasing the value of ℎ occasional 
smokers (𝐿) decreases rapidly with time. In Fig. 3 by 
decreasing the value of ℎ heavy smokers (𝑆) 
decreases rapidly with time. In Fig. 4, by decreasing 
the value of ℎ temporary quitters (𝑄) increases 
initially, but after some time decreases rapidly with 
time. In Fig. 5 by decreasing the value of ℎ 
permanent quitters (𝑅) increases initially, but after 
some time decreases rapidly with time. It can be 
easily seen that by reducing the step size the system 
(1)-(5) converge rapidly to the steady state point. 

 

 
Fig. 1: Numerical solutions for potential smokers in a time 
𝑡 with step size ℎ = 1, ℎ = 5 and ℎ = 10 for disease free 

equilibrium points 
 

 
Fig. 2: Numerical solutions for occasional smokers in a 

time 𝑡 with step size ℎ = 1, ℎ = 5 and ℎ = 10 for disease 
free equilibrium points 

 
Fig. 3: Numerical solutions for heavy smokers in a time 

𝑡 with step size ℎ = 1, ℎ = 5 and ℎ = 10 for disease free 
equilibrium points 

 

 
Fig. 4: Numerical solutions for temporary quitters in a 

time 𝑡 with step size ℎ = 1, ℎ = 5 and ℎ = 10 for disease 
free equilibrium points 

 

 
Fig. 5: Numerical solutions for permanently quitters in a 
time 𝑡 with step size ℎ = 1, ℎ = 5 and ℎ = 10 for disease 

free equilibrium points 

8. Conclusion 

Sufficient conditions for local stability of the DFE 
point 𝐸0 are given by using the basic reproduction 
number 𝑅0 of the model, where it is asymptotically 
stable and sensitivity analysis of the parameters 
involved in threshold parameter 𝑅0, which shows the 
actual behavior of the dynamical model to reduce the 
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smoking effect in the society. It is important to note 
that nonstandard finite difference scheme for 
mathematical models based on system of differential 
equations is more powerful approach to compute the 
convergent solutions for the disease models. Finally, 
we presented the numerical simulation and verified 
all the analytical results numerically by using 
nonstandard finite difference scheme to reduce the 
infected rates very fast for disease free equilibria by 
using different step size, we are able to control the 
spreading of smoking in the community. 
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